pymllm.ffi¶
Submodules¶
Attributes¶
Classes¶
Functions¶
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Package Contents¶
- pymllm.ffi.MLLM_FIND_TORCH_AVAILABLE¶
- pymllm.ffi.MLLM_FIND_NUMPY_AVAILABLE¶
- pymllm.ffi.echo(rec)¶
- Parameters:
rec (str)
- Return type:
None
- pymllm.ffi.initialize_context()¶
- Return type:
None
- pymllm.ffi.shutdown_context()¶
- Return type:
None
- class pymllm.ffi.Tensor¶
Bases:
tvm_ffi.Object- __str__()¶
- Return type:
str
- property shape: tvm_ffi.Shape¶
- Return type:
tvm_ffi.Shape
- tobytes()¶
- Return type:
tvm_ffi.Array
- __sub__(other)¶
- property name¶
- set_name(name)¶
- numel()¶
- property rank¶
- is_contiguous()¶
- pymllm.ffi.empty(shape, dtype=float32, device_type=cpu)¶
- pymllm.ffi.zeros(shape, dtype=float32, device_type=cpu)¶
- pymllm.ffi.ones(shape, dtype=float32, device_type=cpu)¶
- pymllm.ffi.arange(start, end, step=1, dtype=float32, device_type=cpu)¶
- pymllm.ffi.random(shape, start=-1.0, end=1.0, dtype=float32, device_type=cpu)¶
- pymllm.ffi.is_torch_available()¶
- Return type:
bool
- pymllm.ffi.is_numpy_available()¶
- Return type:
bool
- pymllm.ffi.from_torch(torch_tensor)¶
- pymllm.ffi.from_numpy(numpy_tensor)¶
- class pymllm.ffi.Session¶
Bases:
tvm_ffi.Object